12 resultados para gonad and egg

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the studies reported in this thesis was to examine the feeding interactions between calanoid copepods and toxic algae in the Baltic Sea. The central questions in this research concerned the feeding, survival and egg production of copepods exposed to toxic algae. Furthermore, the importance of copepods as vectors in toxin transfer was examined. The haptophyte Prymnesium parvum, which produces extracellular toxins, was the only studied species that directly harmed copepods. Beside this, it had allelopathic effects (cell lysis) on non-toxic Rhodomonas salina. Copepods that were exposed to P. parvum filtrates died or became severely impaired, although filtrates were not haemolytic (indicative of toxicity in this study). Monospecific Prymnesium cell suspensions, in turn, were haemolytic and copepods in these treatments became inactive, although no clear effect on mortality was detected. These results suggest that haemolytic activity may not be a good proxy of the harmful effects of P. parvum. In addition, P. parvum deterred feeding, and low egestion and suppressed egg production were consequently observed in monospecific suspensions of Prymnesium. Similarly, ingestion and faecal pellet production rates were suppressed in high concentration P. parvum filtrates and in mixtures of P. parvum and R. salina. These results indicate that the allelopathic effects of P. parvum on other algal species together with lowered viability as well as suppressed production of copepods may contribute to bloom formation and persistence. Furthermore, the availability of food for planktivorous animals may be affected due to reduced copepod productivity. Nodularin produced by Nodularia spumigena was transferred to Eurytemora affinis via grazing on filaments of small N. spumigena and by direct uptake from the dissolved pool. Copepods also acquired nodularin in fractions where N. spumigena filaments were absent. Thus, the importance of microbial food webs in nodularin transfer should be considered. Copepods were able to remove particulate nodularin from the system, but at the same time a large proportion of the nodularin disappeared. This indicates that copepods may possess effective mechanisms to remove toxins from their tissues. The importance of microorganisms, such as bacteria, in the degradation of cyanobacterial toxins could also be substantial. Our results were the first reports of the accumulation of diarrhetic shellfish toxins (DSTs) produced by Dinophysis spp. in copepods. The PTX2 content in copepods after feeding experiments corresponded to the ingestion of <100 Dinophysis spp. cells. However, no DSTs were recorded from field-collected copepods. Dinophysis spp. was not selected by the copepods and consumption remained low. It seems thus likely that copepods are an unimportant link in the transfer of DSTs in the northern Baltic Sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Individuals face variable environmental conditions during their life. This may be due to migration, dispersion, environmental changes or, for example, annual variation in weather conditions. Genetic adaptation to a novel environment happens through natural selection. Phenotypic plasticity allows, however, a quick individual response to a new environment. Phenotypic plasticity may also be beneficial for individual if the environment is highly variable. For example, eggs are costly to produce. If the food conditions vary significantly between breeding seasons it is useful to be able to adjust the clutch and egg size according to the food abundance. In this thesis I use Ural owl vole system to study phenotypic plasticity and natural selection using a number of reproduction related traits. The Ural owl (Strix uralensis) is a long-lived and sedentary species. The reproduction and survival of the Ural owl, in fact their whole life, is tied to the dramatically fluctuating vole densities. Ural owls do not cause vole cycles but they have to adjust their behaviour to the rather predictable population fluctuations of these small mammals. Earlier work with this system has shown that Ural owl laying date and clutch size are plastic in relation to vole abundance. Further, individual laying date clutch size reaction norms have been shown to vary in the amount of plasticity. My work extends the knowledge of natural selection and phenotypic plasticity in traits related to reproduction. I show that egg size, timing of the onset of incubation and nest defense aggressiveness are plastic traits with fitness consequences for the Ural owl. Although egg size is in general thought to be a fixed characteristic of an individual, this highly heritable trait in the Ural owl is also remarkably plastic in relation to the changes in vole numbers, Ural owls are laying the largest eggs when their prey is most abundant. Timing of the onset of incubation is an individual-specific property and plastic in relation to clutch size. Timing of incubation is an important underlying cause for asynchronous hatching in birds. Asynchronous hatching is beneficial to offspring survival in Ural owl. Hence, timing of the onset of incubation may also be under natural selection. Ural owl females also adjust their nest defense aggressiveness according to the vole dynamics, being most aggressive in years when they produce the largest broods. Individual females show different levels of nest defense aggressiveness. Aggressiveness is positively correlated with the phenotypic plasticity of aggressiveness. As elevated nest defense aggressiveness is selected for, it may promote the plasticity of aggressive nest defense behaviour. All the studied traits are repeatable or heritable on individual level, and their expression is either directly or indirectly sensitive to changes in vole numbers. My work considers a number of important fitness-related traits showing phenotypic plasticity in all of them. Further, in two chapters I show that there is individual variation in the amount of plasticity exhibited. These findings on plasticity in reproduction related traits suggest that variable environments indeed promote plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the European Union, conventional cages for laying hens will be faded out at the beginning of 2012. The rationale behind this is a public concern over animal welfare in egg production. As alternatives to conventional cages, the European Union Council Directive 1999/74/EC allows non-cage systems and enriched (furnished) cages. Layer performance, behavior, and welfare in differently sized furnished cages have been investigated quite widely during recent decades, but nutrition of hens in this production system has received less attention. This thesis aims to compare production and feed intake of laying hens in furnished and conventional cages and to study the effects of different dietary treatments in these production systems, thus contributing to the general knowledge of furnished cages as an egg production system. A furnished cage model for 8 hens was compared with a 3-hen conventional cage. Three consecutive experiments each studied one aspect of layer diet: The first experiment investigated the effects of dietary protein/energy ratio, the second dietary energy levels, and the third the effects of extra limestone supplementation. In addition, a fourth experiment evaluated the effects of perches on feed consumption and behavior of hens in furnished cages. The dietary treatments in experiments 1 3 generally had similar effects in the two cage types. Thus, there was no evidence supporting a change in nutrient requirements for laying hens when conventional cages are replaced with small-group furnished cages. Moreover, the results from nutritional experiments conducted in conventional cages can be applied to small-group furnished cage systems. These results support the view that production performance comparable with conventional cages can be achieved in furnished cages. All of the advantages of cages for bird welfare are sustained in the small-group furnished cages used here. In addition, frequent use of perches and nests implies a wider behavioral repertoire in furnished cages than in conventional cages. The increase observed in bone ash content may improve bird welfare in furnished cages. The presence of perches diminished feed consumption during the prelaying period and enhanced the feed conversion ratio during the early laying period in furnished cages. However, as the presence or absence of perches in furnished cages had no significant effect on feed consumption after the prelaying period, the lower feed consumption observed in furnished cages than in conventional cages could be attributed to other factors, such as the presence of wood shavings or a nest box. The wider feed trough space per hen in conventional than in furnished cages may partly explain the higher feed consumption observed in conventional cages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Screening of wastewater effluents from municipal and industrial wastewater treatment plants with biotests showed that the treated wastewater effluents possess only minor acute toxic properties towards whole organisms (e.g. bacteria, algae, daphnia), if any. In vitro tests (sub-mitochondrial membranes and fish hepatocytes) were generally more susceptible to the effluents. Most of the effluents indicated the presence of hormonally active compounds, as the production of vitellogenin, an egg yolk precursor protein, was induced in fish hepatocytes exposed to wastewater. In addition, indications of slight genotoxic potential was found in one effluent concentrate with a recombinant bacteria test. Reverse electron transport (RET) of mitochondrial membranes was used as a model test to conduct effluent assessment followed by toxicant characterisations and identifications. Using a modified U.S. EPA Toxicity Identification Evaluation Phase I scheme and additional case-specific methods, the main compound in a pulp and paper mill effluent causing RET inhibition was characterised to be an organic, relatively hydrophilic high molecular weight (HMW) compound. The toxicant could be verified as HMW lignin by structural analyses using nuclear magnetic resonance. In the confirmation step commercial and in-house extracted lignin products were used. The possible toxicity related structures were characterised by statistical analysis of the chemical breakdown structures of laboratory-scale pulping and bleaching effluents and the toxicities of these effluents. Finally, the biological degradation of the identified toxicant and other wastewater constituents was evaluated using bioassays in combination with chemical analyses. Biological methods have not been used routinely in establishing effluent discharge limits in Finland. However, the biological effects observed in this study could not have been predicted using only routine physical and chemical effluent monitoring parameters. Therefore chemical parameters cannot be considered to be sufficient in controlling effluent discharges especially in case of unknown, possibly bioaccumulative, compounds that may be present in small concentrations and may cause chronic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies of life history evolution are based on the assumption that species exist at equilibrium and spatially distinct separated populations. In reality, this is rarely the case, as populations are often spatially structured with ephemeral local populations. Therefore, the characteristics of metapopulations should be considered while studying factors affecting life history evolution. Theoretical studies have examined spatial processes shaping the evolution of life history traits to some extent, but there is little empirical data and evidence to investigate model predictions. In my thesis I have tried to bridge the gap between theoretical and empirical studies by using the well-known Glanville fritillary (Melitaea cinxia) metapopulation as a model system. The long-term persistence of classic metapopulations requires sufficient dispersal to establish new local populations to compensate for local extinctions. Previous studies on the Glanville fritillary have shown that females establishing new populations are not a random sample from the metapopulation, but they are in fact more dispersive than females in old populations. Many other life-history traits, such as body size, fecundity and lifespan, may be related to dispersal rate. Therefore, I examined a range of correlated traits for their evolutionary and ecological consequences. I was particularly interested in how the traits vary under natural environmental conditions, hence all studies were conducted in a large (32 x 26 m) outdoor population cage built upon a natural habitat patch. Individuals for the experiments were sampled from newly-established and old populations within a large metapopulation. Results show that females originating from newly-established populations had higher within-habitat patch mobility than females from old populations. I showed that dispersal rate is heritable and that flight activity is related to variation in a gene encoding the glycolytic enzyme phosphoglucose isomerase. Both among-individual and among-population variation in dispersal are correlated with the reproductive performance of females, though I found no evidence for a trade-off between dispersal and fecundity in terms of lifetime egg production or clutch size. Instead, the results suggest that highly dispersive females from newly-established populations have a shorter lifespan than females from old populations, and that dispersive females may pay a cost in terms of reduced lifetime reproductive success due to increased time spent outside habitat patches. In summary, the results of this thesis show that genotype-dependent dispersal rate correlates with other life history traits in the Glanville fritillary, and that the rapid turnover of local populations (extinctions and re-colonisations) is likely to be the mechanism that maintains phenotypic variation in many life history traits at the metapopulation level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind this carry-over effect of supplementary food on fecundity. The supplementary-fed parents reduced their feeding investment in the offspring compared to controls, which enabled the fed female parents to invest the surplus resources in parasite resistance. Fed female parents had lower blood parasite loads than control females and this effect lasted until the following year when also reproductive output was increased. Hence, increased investment in parasite resistance when resources are plentiful has the potential to mediate positive carry-over effects on future reproduction. I further found that this carry-over effect was only present when potentials for future reproduction were good. The thesis also provides new knowledge on resource limitation on maternal effects. I found that increased resources prior to egg laying improve the condition and health of Ural owl females and enable them to allocate more resources to reproduction than control females. These additional resources are not allocated to increase the number of offspring, but instead to improve the quality of each offspring. Fed Ural owl females increased the size of their eggs and allocated more health improving immunological components into the eggs. Furthermore, the increased egg size had long-lasting effects on offspring growth, as offspring from larger eggs were heavier at fledging. Limiting resources can have different short- and long-term consequences on reproductive decisions that affect both offspring number and quality. In long-lived organisms, such as the Ural owl, it appears to be beneficial in terms of fitness to invest in long breeding life-span instead of additional investment in current reproduction. In Ural owls, females can influence the phenotypic quality of the offspring by transferring additional resources to the eggs that can have long-lasting effects on growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The actin cytoskeleton is essential for a large variety of cell biological processes. Actin exists in either a monomeric or a filamentous form, and it is very important for many cellular functions that the local balance between these two actin populations is properly regulated. A large number of proteins participate in the regulation of actin dynamics in the cell, and twinfilin, one of the proteins examined in this thesis, belongs to this category. The second level of regulation involves proteins that crosslink or bundle actin filaments, thereby providing the cell with a certain shape. α-Actinin, the second protein studied, mainly acts as an actin crosslinking protein. Both proteins are conserved in organisms ranging from yeast to mammals. In this thesis, the roles of twinfilin and α-actinin in development were examined using Drosophila melanogaster as a model organism. Twinfilin is an actin monomer binding protein that is structurally related to cofilin. In vitro, twinfilin reduces actin polymerisation by sequestering actin monomers. The Drosophila twinfilin (twf) gene was identified and found to encode a protein functionally similar to yeast and mammalian twinfilins. A strong hypomorphic twf mutation was identified, and flies homozygous for this allele were viable and fertile. The adult twf mutant flies displayed reduced viability, a rough eye phenotype and severely malformed bristles. The shape of the adult bristle is determined by the actin bundles that are regularly spaced around the perimeter of the developing pupal bristles. Examination of the twf pupal bristles revealed an increased level of filamentous actin, which in turn resulted in splitting and displacement of the actin bundles. The bristle defect was rescued by twf overexpression in developing bristles. The Twinfilin protein was localised at sites of actin filament assembly, where it was required to limit actin polymerisation. A genetic interaction between twinfilin and twinstar (the gene encoding Cofilin) was detected, consistent with the model predicting that both proteins act to limit the amount of filamentous actin. α-Actinin has been implicated in several diverse cell biological processes. In Drosophila, the only function for α-actinin yet known is in the organisation of the muscle sarcomere. Muscle and non-muscle cells utilise different α-actinin isoforms, which in Drosophila are produced by alternative splicing of a single gene. In this work, novel α-actinin deletion alleles, including ActnΔ233, were generated, which specifically disrupted the transcript encoding the non-muscle α-actinin isoform. Nevertheless, ActnΔ233 homozygous mutant flies were viable and fertile with no obvious defects. By comparing α-actinin protein distribution in wild type and ActnΔ233 mutant animals, it could be concluded that non-muscle α-actinin is the only isoform expressed in young embryos, in the embryonic central nervous system and in various actin-rich structures of the ovarian germline cells. In the ActnΔ233 mutant, α-actinin was detected not only in muscle tissue, but also in embryonic epidermal cells and in certain follicle cell populations in the ovaries. The population of α-actinin protein present in non-muscle cells of the ActnΔ233 mutant is referred to as FC-α-actinin (Follicle Cell). The follicular epithelium in the Drosophila ovary is a well characterised model system for studies on patterning and morphogenesis. Therefore, α-actinin expression, regulation and function in this tissue were further analysed. Examination of the α-actinin localisation pattern revealed that the basal actin fibres of the main body follicle cells underwent an organised remodelling during the final stages of oogenesis. This involved the assembly of a transient adhesion site in the posterior of the cell, in which α-actinin and Enabled (Ena) accumulated. Follicle cells genetically manipulated to lack all α-actinin isoforms failed to remodel their cytoskeleton and translocate Ena to the posterior of the cell, while the actin fibres as such were not affected. Neither was epithelial morphogenesis disrupted. The reorganisation of the basal actin cytoskeleton was also disturbed following ectopic expression of Decapentaplegic (Dpp) or as a result of a heat shock. At late oogenesis, the main body follicle cells express both non-muscle α-actinin and FC-α-actinin, while the dorsal anterior follicle cells express only non-muscle α-actinin. The dorsal anterior cells are patterned by the Dpp and Epidermal growth factor receptor (EGFR) signalling pathways, and they will ultimately secrete the dorsal appendages of the egg. Experiments involving ectopic activation of EGFR and Dpp signalling showed that FC-α-actinin is negatively regulated by combined EGFR and Dpp signalling. Ubiquitous overexpression of the adult muscle-specific α-actinin isoform induced the formation of aberrant actin bundles in migrating follicle cells that did not normally express FC-α-actinin, provided that the EGFR signalling pathway was activated in the cells. Taken together, this work contributes new data to our knowledge of α-actinin function and regulation in Drosophila. The cytoskeletal remodelling shown to depend on α-actinin function provides the first evidence that α-actinin has a role in the organisation of the cytoskeleton in a non-muscle tissue. Furthermore, the cytoskeletal remodelling constitutes a previously undescribed morphogenetic event, which may provide us with a model system for in vivo studies on adhesion dynamics in Drosophila.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions among individuals give rise to both cooperation and conflict. Individuals will behave selfishly or altruistically depending on which gives the higher payoff. The reproductive strategies of many animals are flexible and several alternative tactics may be present from which the most suitable one is applied. Generally, alternative reproductive tactics may be defined as a response to competition from individuals of the same sex. These alternative reproductive tactics are means by which individuals may fine-tune their fitness to the reigning circumstances and which are shaped by the environment individuals are occupying as well as by the behaviour of other individuals sharing the environment. By employing such alternative ways of achieving reproductive output, individuals may alleviate competition from others. Conspecific brood parasitism (CBP) is an alternative reproductive strategy found in several egg laying animal groups, and it is especially common among waterfowl. Within this alternative reproductive strategy, four reproductive options can be identified. These four options represent a continuum from low reproductive effort coupled with low fitness returns, to high reproductive effort and consequently high benefits. It may not be evident how individuals should allocate reproductive effort between eggs laid in their own nest vs. in nests of others, however. Limited fecundity will constrain the number of eggs donated by a parasite, but also the tendency for hosts to accept parasitic eggs may affect the allocation decision. Furthermore, kinship, individual quality and the costs of breeding may play a role in complicating the allocation decision. In this thesis, I view the seemingly paradoxical effects of kinship on conflict resolution in the context of alternative reproductive tactics, examining the resulting features of cooperation and conflict. Conspecific brood parasitism sets the stage for investigating these questions. By using both empirical and theoretical approaches, I examine the nature of CBP in a brood parasitic duck, the Barrow's goldeneye (Bucephala islandica). The theoretical chapter of this thesis gives rise to four main conclusions. Firstly, variation in individual quality plays a central role in shaping breeding strategies. Secondly, kinship plays a central role in the evolution of CBP. Thirdly, egg recognition ability may affect the prevalence of parasitism. If egg recognition is perfect, higher relatedness between host and parasite facilitates CBP. Finally, I show that the relative costs of egg laying and post-laying care play a so far underestimated role in determining the prevalence of parasitism. The costs of breeding may outweigh possible inclusive fitness benefits accrued from receiving eggs from relatives. Several of the patterns brought out by the theoretical work are then confirmed empirically in the following chapters. Findings include confirmation of the central role of relatedness in determining the extent of parasitism as well as inducing a counterintuitive host clutch reduction. Furthermore, I demonstrate a cost of CBP inflicted on hosts, as well as results suggesting that host age reflects individual quality, affecting the ability to overcome costs inflicted by CBP. In summary, I demonstrate both theoretically and empirically the presence of cooperation and conflict in the interactions between conspecific parasites and their hosts. The field of CBP research has traditionally been divided, but the first steps have now been taken toward the acceptance of the opposite side of the divide. Especially the theoretical findings of chapter 1 offer the possibility to view seemingly contrasting results of various studies within the same framework, and may direct future research toward more general features underlying differences in the patterns of CBP between populations or species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous production of blood cells, a process termed hematopoiesis, is sustained throughout the lifetime of an individual by a relatively small population of cells known as hematopoietic stem cells (HSCs). HSCs are unique cells characterized by their ability to self-renew and give rise to all types of mature blood cells. Given their high proliferative potential, HSCs need to be tightly regulated on the cellular and molecular levels or could otherwise turn malignant. On the other hand, the tight regulatory control of HSC function also translates into difficulties in culturing and expanding HSCs in vitro. In fact, it is currently not possible to maintain or expand HSCs ex vivo without rapid loss of self-renewal. Increased knowledge of the unique features of important HSC niches and of key transcriptional regulatory programs that govern HSC behavior is thus needed. Additional insight in the mechanisms of stem cell formation could enable us to recapitulate the processes of HSC formation and self-renewal/expansion ex vivo with the ultimate goal of creating an unlimited supply of HSCs from e.g. human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPS) to be used in therapy. We thus asked: How are hematopoietic stem cells formed and in what cellular niches does this happen (Papers I, II)? What are the molecular mechanisms that govern hematopoietic stem cell development and differentiation (Papers III, IV)? Importantly, we could show that placenta is a major fetal hematopoietic niche that harbors a large number of HSCs during midgestation (Paper I)(Gekas et al., 2005). In order to address whether the HSCs found in placenta were formed there we utilized the Runx1-LacZ knock-in and Ncx1 knockout mouse models (Paper II). Importantly, we could show that HSCs emerge de novo in the placental vasculature in the absence of circulation (Rhodes et al., 2008). Furthermore, we could identify defined microenvironmental niches within the placenta with distinct roles in hematopoiesis: the large vessels of the chorioallantoic mesenchyme serve as sites of HSC generation whereas the placental labyrinth is a niche supporting HSC expansion (Rhodes et al., 2008). Overall, these studies illustrate the importance of distinct milieus in the emergence and subsequent maturation of HSCs. To ensure proper function of HSCs several regulatory mechanisms are in place. The microenvironment in which HSCs reside provides soluble factors and cell-cell interactions. In the cell-nucleus, these cell-extrinsic cues are interpreted in the context of cell-intrinsic developmental programs which are governed by transcription factors. An essential transcription factor for initiation of hematopoiesis is Scl/Tal1 (stem cell leukemia gene/T-cell acute leukemia gene 1). Loss of Scl results in early embryonic death and total lack of all blood cells, yet deactivation of Scl in the adult does not affect HSC function (Mikkola et al., 2003b. In order to define the temporal window of Scl requirement during fetal hematopoietic development, we deactivated Scl in all hematopoietic lineages shortly after hematopoietic specification in the embryo . Interestingly, maturation, expansion and function of fetal HSCs was unaffected, and, as in the adult, red blood cell and platelet differentiation was impaired (Paper III)(Schlaeger et al., 2005). These findings highlight that, once specified, the hematopoietic fate is stable even in the absence of Scl and is maintained through mechanisms that are distinct from those required for the initial fate choice. As the critical downstream targets of Scl remain unknown, we sought to identify and characterize target genes of Scl (Paper IV). We could identify transcription factor Mef2C (myocyte enhancer factor 2 C) as a novel direct target gene of Scl specifically in the megakaryocyte lineage which largely explains the megakaryocyte defect observed in Scl deficient mice. In addition, we observed an Scl-independent requirement of Mef2C in the B-cell compartment, as loss of Mef2C leads to accelerated B-cell aging (Gekas et al. Submitted). Taken together, these studies identify key extracellular microenvironments and intracellular transcriptional regulators that dictate different stages of HSC development, from emergence to lineage choice to aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastric motility disorders, including delayed gastric emptying (gastroparesis), impaired postprandial fundic relaxation, and gastric myoelectrical disorders, can occur in type 1 diabetes, chronic renal failure, and functional dyspepsia (FD). Symptoms like upper abdominal pain, early satiation, bloating, nausea and vomiting may be related to gastroparesis. Diabetic gastroparesis is related to autonomic neuropathy. Scintigraphy is the gold standard in measuring gastric emptying, but it is expensive, requires specific equipment, and exposes patients to radiation. It also gives information about the intragastric distribution of the test meal. The 13C-octanoic acid breath test (OBT) is an alternative, indirect method of measuring gastric emptying with a stable isotope. Electrogastrography (EGG) registers the slow wave originating in the pacemaker area of the stomach and regulating the peristaltic contractions of the antrum. This study compares these three methods of measuring gastric motility in patients with type 1 diabetes, functional dyspepsia, and chronic renal failure. Currently no effective drugs for treating gastric motility disorders are available. We studied the effect of nizatidine on gastric emptying, because in preliminary studies this drug has proven to have a prokinetic effect due to its cholinergic properties. Of the type 1 patients, 26% had delayed gastric emptying of solids as measured by scintigraphy. Abnormal intragastric distribution of the test meal occurred in 37% of the patients, indicating impaired fundic relaxation. The autonomic neuropathy score correlated positively with the gastric emptying rate of solids (P = 0.006), but HbA1C, plasma glucose levels, or abdominal symptoms were unrelated to gastric emptying or intragastric distribution of the test meal. Gastric emptying of both solids and liquids was normal in all FD patients but abnormal intragastric distribution occurred in 38% of the patients. Nizatidine improved symptom scores and quality of life in FD patients, but not significantly. Instead of enhancing, nizatidine slowed gastric emptying in FD patients (P < 0.05). No significant difference appeared in the frequency of the gastric slow waves measured by EGG in the patients and controls. The correlation between gastric half-emptying times of solids measured by scintigraphy and OBT was poor both in type 1 diabetes and FD patients. According to this study, dynamic dual-tracer scintigraphy is more accurate than OBT or EGG in measuring gastric emptying of solids. Additionally it provides information about gastric emptying of liquids and the intragastric distribution of the ingested test meal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between hosts and parasites is one of the most studied interactions between living organisms, and it is both universal and common in nature. Parasitoids are special type of parasites whose offspring develop attached to or within a single host organism that it ultimately consumes and kills. Hosts are arthropods and most parasitoids belong to the insect order Hymenoptera. For almost two decades metapopulation research on the Glanville fritillary butterfly (Melitaea cinxia) has been conducted in the Åland Islands, Finland. The studies have been concerned with the population dynamics, evolution, genetics, behavior, natural history and life history characteristics of M. cinxia, as well as with species interacting with the butterfly. The parasitoids of M. cinxia have been under long term studies and much has been learned about specific host-parasitoid interactions during the past decade. The research for this Master s thesis was done in the Åland Islands during summer 2010. I conducted a reciprocal transplant style experiment in order to compare the performance of host butterflies (M. cinxia) under attack by different parasitoid wasps (C. melitaearum). I used hosts and parasitoids from five origins around the Baltic Sea: Öland, Uppland, Åland, Saaremaa and Pikku-Tytärsaari. The host-parasitoid relationship was studied in terms of host susceptibility and parasitoid virulence, addressing specifically the possible effects of inbreeding and local adaptation of both parasitoids and their hosts. I compared various factors such as host defence ratio, parasitoid development rate, cocoon production rate etc. I also conducted a small scale C. melitaearum egg development experiment and C. melitaearum external morphology comparison between different parasitoid populations. The results show that host resistance and parasitoid virulence differ between both host and parasitoid populations. For example, Öland hosts were most susceptible to parasitoids and especially vulnerable to Pikku-Tytärsaari wasps. Pikku-Tytärsaari wasps were most successful in terms of parasitoids virulence and efficiency except in Saaremaa hosts, where the wasp did not succeed. Saaremaa hosts were resistant except towards Åland parasitoids. I did not find any simple pattern concerning host resistance and parasitoid virulence between inbred and outbred populations. Also, the effect of local adaptation was not detected, perhaps because metapopulation processes disturb local adaptation of the studied populations. Morphological comparisons showed differences between studied wasp populations and sexual dimorphism was obvious with females being bigger that males. There were also interesting differences among populations in male and female wing shapes. The results raise many further questions. Especially interesting were Pikku-Tytärsaari wasps that did well in terms of efficiency and virulence. Pikku-Tytärsaari is a small, isolated island in the Gulf of Finland and both the host and parasitoids are extremely inbred. For the host and parasitoid to persist in the island, the host has to have some mechanisms to escape the parasitoid. Further research will be done on the subject to discover the mechanisms of Pikku-Tytärsaari host s ability to escape parasitism. Also, genetic analyses will be conducted in the near future to determine the relatedness of used C. melitaearum populations.